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Changing Requirements 

 Urban 

 Climate Change 

 Renewable Energy 

 Computing 

 Communication 

 Sustainability 

 Mobility 

 Focus on Impacts 
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A Short History of NWP 

 1904: Weather 

prediction approached 

from the standpoint of 

mechanics & physics 

 1922: Weather 

Prediction by Numerical 

Process (Richardson & 

Bjerknes) 

 1950: The ENIAC 

experiment (Electronic 

Numerical Integrator 

And Computer) was the 
first electronic general-

purpose computer.) 

 1967: Predicting frontal 

precipitation with a 10 

level model 
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General Numerical 

Modelling System 
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Observing the World 5 
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Sharing Data 7 



Using Observations 

 Quality Control 

 Buddy checks 

 Climatology 

 Temporal consistency 

 Background field 

 

 Interpolated onto the model grid 
points 

 

 Different types of data have different 
areas of influence 
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Using Observations 

• NWP cannot rely solely on observations to produce its initial 
conditions 

– There are too few  

– Point observations may not be representative of a grid box 

 

• A short period forecast from a previous run of the model fills the gaps 

– Model background field 

 

Assimilation is the process of finding the model representation which is 
most consistent with the observations 
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Data Assimilation 

 Method used to blend real and model data 

 Model is run for an assimilation period prior to the 

forecast 

 Data is inserted into the run at or near their validity 

time to nudge the model towards reality 
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Data Assimilation 11 

The Challenge 
• To compute the model state from which the resulting forecast 

best matches the available observations 



General Numerical 

Modelling System 
12 
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Horizontal & Vertical Resolution 
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Horizontal Resolution 14 
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Vertical Resolution 15 

WHAT IS AN ATMOSPHERIC MODEL? 
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Vertical Resolution 16 

WHAT IS AN ATMOSPHERIC MODEL? 

Y 

X 
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Z=37 



Temporal Resolution 
17 

Y 

X 

Z 

How often does the model solve the 
equations at each grid point on the 
zn levels? 

 Relationship between horizontal resolution and time step 
for calculations 

 Ratio of 1:6 

 Time-step=DX*6 (i.e. 10 km = time-step of 60s) 
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Parameterization 

 What is physical parameterization and why we need 

physical parameterization? 

 What processes should be parameterized? 

 The problems in parameterization 

 How do we do parameterization in models? 
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Adapted from: 

www.inscc.utah.edu/~reichler/6030/Sample_talk.ppt 



Adapted from: 

www.inscc.utah.edu/~reichler/6030/Sample_talk.ppt 

Characteristic scales of 
atmospheric processes  

What is Parameterization? 

• Processes too small for model resolution 

• Radiation, convection and boundary layer exchanges 

• To represent these changes is called parameterization 

• Constrained by:  

– Computational power 

– Understanding of the processes 

 Atmospheric motions have 

different scales. 

 Climate model resolutions:  

 Regional: ~4 km                  

 Global: ~20 km     

 Sub-grid scale processes:     

Atmospheric processes with scales 

can not be explicitly resolved by 

models.  

 Physical parameterization: To 

represent the effect of sub-grid 

processes by using resolvable scale 

fields. 
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Adapted from: 

www.inscc.utah.edu/~reichler/6030/Sample_talk.ppt 

 Dynamic core of models  Model physics: 

• Processes such as phase 
change of the water are 
in too small scale and too 
complex.  

• Processes such as cloud 
microphysics are poorly 
understood. 
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Why do we need 

parameterization? 
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Adapted from: 

www.inscc.utah.edu/~reichler/6030/Sample_talk.ppt 

 Radiation transfer. 

 Surface processes.  

 Vertical turbulent processes.  

 Clouds and large-scale 

condensation. 

 Cumulus convection. 

 Gravity wave drag. 
16 major  physical processes in climate system. (from 

http://www.meted.ucar.edu/nwp/pcu1/ic4/frameset.htm) 

Model Physics include: 

What should be 

Parameterized? 
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Adapted from: 

www.inscc.utah.edu/~reichler/6030/Sample_talk.ppt 

 Ignore some processes (in simple models). 

 Simplifications of complex processes based on some assumptions. 

 Statistical/empirical relationships and approximations based on 

observations. 

 Nested models and super-parameterization:  Embed a cloud model as a 

parameterization into climate models.  

How do we do 

Parameterization in 

models? 
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1. Initial State 

2. Primitive Equations 

3. Resolution 

4. Time Range 

 

Atmospheric Modelling 24 



Temporal and Spatial 

Resolution 
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Chaos in the Atmosphere 

 When potential 

energy is available for 

conversion to kinetic 

energy and a trigger 

is present, small 

disturbances may 

grow rapidly into 

weather systems. 

 Small errors may 

rapidly lead to large 

forecast errors. 
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The atmosphere is a chaotic system: 
“…one flap of the seagull’s wing may forever 

change the future course of the weather.” 
(Lorenz, 1963)  



Quantifying Uncertainty with 

Ensembles 
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Improving Accuracy of 

NWP 

 finer resolution 

 larger domains 

 longer forecasts 

 better use of observations 

 better representation of atmospheric processes 

 

Increasing computer speed and memory has 

enabled that research to be implemented. 
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Additional Information 

Register on www.meted.ucar.edu 

 

 Model Fundamentals: 
https://www.meted.ucar.edu/training_module.php?id=700#.UoCIbeI-u2A 

 Optimizing the Use of Model Data Products: 
https://www.meted.ucar.edu/training_module.php?id=778#.UoCHpuI-u2A 

 How NWP fits into the Forecast Process: 
https://www.meted.ucar.edu/training_module.php?id=755#.UoCH1uI-u2A 

 Understanding Assimilation Systems: 
https://www.meted.ucar.edu/training_module.php?id=704#.UoCH_uI-u2A 

 How Model Produce Precipitation and Clouds: 
https://www.meted.ucar.edu/training_module.php?id=701#.UoCIIeI-u2A 
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